LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Simulation of Gas/Solid Heat Transfer in Metallic Foams: A General Correlation for Different Porosities and Pore Sizes

In the present research work, numerical simulations were performed to investigate the effects of structural parameters on fluid flow and heat transfer under unsteady state conditions in aluminium foams, with… Click to show full abstract

In the present research work, numerical simulations were performed to investigate the effects of structural parameters on fluid flow and heat transfer under unsteady state conditions in aluminium foams, with various physical specifications such as different porosities (76–96%), pores diameter (100–500 μm) and tortuosity (1.024–1.14), by meshing computed micro-tomography images. In all the simulated cases, the fluid was considered as air with a temperature of 500 K and different superficial velocities (1–6 m/s) entered the foam with a temperature of 300 K. Calculation of the pressure gradient based on a generic formula ΔP/L = αv + βv2 shows that by increasing porosity and pore diameter, coefficients α and β decrease. Moreover, heat transfer analysis shows that the average convection heat transfer coefficient (have) depends on the geometrical parameters of the foam and also on the superficial velocity of the fluid. In fact, the minor changes in the pore diameter can greatly affect have (e.g. the variation of have for samples with 86% porosity at inlet velocity of 5 m/s and different pore diameters from 500 to 100 μm: 250 to 600 J/m2 s K). However, the porosity variations do not have significant effects on have. On the other hand, by using the nonlinear least square fitting technique and also including the structural factor (Fs, function of the foam geometrical parameters) to the Nu correlation, the equation Nu = 0.0305 Re0.77 Fs [where Fs = ((1 − ε)/τ)−0.27 (dp/dt)−5.108] for determining the Nu in the different foams has been proposed. The equation and simulated results are agreed with each other very well and additionally are similar to the previous studies. Therefore, it’s expected that this equation can be used in design and performance evaluation of porous heat exchangers and porous catalysts.

Keywords: numerical simulation; simulation gas; heat transfer; different porosities; heat

Journal Title: Transport in Porous Media
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.