A key role in inference is played by randomization, which has been extensively used in clinical trials designs. Randomization is primarily intended to prevent the source of bias in treatment… Click to show full abstract
A key role in inference is played by randomization, which has been extensively used in clinical trials designs. Randomization is primarily intended to prevent the source of bias in treatment allocation by producing comparable groups. In the frequentist framework of inference, randomization allows also for the use of probability theory to express the likelihood of chance as a source for the difference of end outcome. In the Bayesian framework, its role is more nuanced. The Bayesian analysis of clinical trials can afford a valid rationale for selective controls, pointing out a more limited role for randomization than it is generally accorded. This paper is aimed to offer a view of randomization from the perspective of both frequentist and Bayesian statistics and discussing the role of randomization also in theoretical decision models.
               
Click one of the above tabs to view related content.