LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Some Properties of the Moduli of Continuity of Periodic Functions in Metric Spaces

Photo from archive.org

Let L0(T) be the set of real-valued periodic measurable functions, let Ψ: R+→ R+ be the modulus of continuity, and letLΨ≡LΨT=f∈L0T:fΨ≔12π∫TΨfxdx Click to show full abstract

Let L0(T) be the set of real-valued periodic measurable functions, let Ψ: R+→ R+ be the modulus of continuity, and letLΨ≡LΨT=f∈L0T:fΨ≔12π∫TΨfxdx<∞.$$ {L}_{\Psi}\equiv {L}_{\Psi}(T)=\left\{f\in {L}_0(T):{\left\Vert f\right\Vert}_{\Psi}\coloneq \frac{1}{2\uppi}\underset{T}{\int}\Psi \left(\left|f(x)\right|\right) dx<\infty \right\}. $$ We study the properties of multiple moduli of continuity for the functions from LΨ.

Keywords: psi; periodic functions; moduli continuity; continuity; continuity periodic; properties moduli

Journal Title: Ukrainian Mathematical Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.