We study the critical point equation $(CPE)$ conjecture on almost Kenmotsu manifolds. First, we prove that if a three-dimensional $(k,\mu)'$-almost Kenmotsu manifold satisfies the $CPE,$ then the manifold is either… Click to show full abstract
We study the critical point equation $(CPE)$ conjecture on almost Kenmotsu manifolds. First, we prove that if a three-dimensional $(k,\mu)'$-almost Kenmotsu manifold satisfies the $CPE,$ then the manifold is either locally isometric to the product space $\mathbb H^2(-4)\times\mathbb R$ or the manifold is Kenmotsu manifold. Further, we prove that if the metric of an almost Kenmotsu manifold with conformal Reeb foliation satisfies the $CPE$ conjecture, then the manifold is Einstein.
               
Click one of the above tabs to view related content.