UDC 517.5 We introduce a $(p,q)$-analogue of the poly-Euler polynomials and numbers by using the $(p,q)$-polylogarithm function. These new sequences are generalizations of the poly-Euler numbers and polynomials. We give… Click to show full abstract
UDC 517.5 We introduce a $(p,q)$-analogue of the poly-Euler polynomials and numbers by using the $(p,q)$-polylogarithm function. These new sequences are generalizations of the poly-Euler numbers and polynomials. We give several combinatorial identities and properties of these new polynomials, and also show some relations with $(p,q)$-poly-Bernoulli polynomials and $(p,q)$-poly-Cauchy polynomials. The $(p,q)$-analogues generalize the well-known concept of the $q$-analogue.
               
Click one of the above tabs to view related content.