UDC 517.9 Two meromorphic functions $f$ and $g$ are said to share the set $S\subset \mathbb{C}\cup\{\infty\}$ with weight $l\in\mathbb{N}\cup\{0\}\cup\{\infty\},$ if $E_{f}(S,l)=E_{g}(S,l),$ where $$$E_{f}(S,l)=\bigcup_{a \in S} \big \{(z,t) \in \mathbb{C}\times\mathbb{N} \bigm|… Click to show full abstract
UDC 517.9 Two meromorphic functions $f$ and $g$ are said to share the set $S\subset \mathbb{C}\cup\{\infty\}$ with weight $l\in\mathbb{N}\cup\{0\}\cup\{\infty\},$ if $E_{f}(S,l)=E_{g}(S,l),$ where $$$E_{f}(S,l)=\bigcup_{a \in S} \big \{(z,t) \in \mathbb{C}\times\mathbb{N} \bigm| f(z)=a \; \text{with multiplicity} \;p \big \},$$ where $t=p$ if $p\leq l$ and $t=p+1$ if $p>l.$ In this paper, we improve and supplement the result of L. W. Liao and C. C. Yang [Indian J. Pure and Appl. Math., 31, No~4, 431–440 (2000)] by showing that there exist a finite set $S$ with 13 elements such that $E_{f}(S,1)=E_{g}(S,1)$ implies $f\equiv g.$
               
Click one of the above tabs to view related content.