LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular analysis of maize (Zea mays L.)-infecting mastreviruses in Ethiopia reveals marked diversity of virus genomes and a novel species

Photo from wikipedia

Maize (Zea mays L.) is host for more than 50 virus species worldwide with Maize streak virus (MSV) (genus Mastrevirus) causing significant yield losses in Africa. A survey for viruses… Click to show full abstract

Maize (Zea mays L.) is host for more than 50 virus species worldwide with Maize streak virus (MSV) (genus Mastrevirus) causing significant yield losses in Africa. A survey for viruses infecting maize was conducted in major growing regions of Ethiopia. To test for DNA viruses, in particular mastreviruses, rolling circle amplification was performed for the analysis of virus composition in assayed samples. Following the analysis of the entire virus genomes, three genetic groups, each representing distinct virus species, were identified. The first group was almost identical with the A-strain of MSV. The next sequence-cluster shared 96–98% identity with isolates of Maize streak reunion virus (MSRV) confirming the presence of this virus also in continental East Africa. Sequence analysis of additional virus genomes (each 2846 nt) in length revealed only a limited 70–71% nt identity with MSRV isolates and an even lower identity (< 64%) with sequences of mastreviruses described elsewhere. Our analysis suggests a novel virus species, which is tentatively named maize streak dwarfing virus (MSDV). The pairwise comparison of capsid protein and replication-associated protein (Rep) of the novel species revealed a limited identity of 63% and 68% with the respective protein sequences of MSRV. The incidence of the virus species in the maize regions of Ethiopia was studied across 89 samples collected during four growing seasons. PCR analysis with general and specific mastrevirus primers showed that MSV is the most incident virus (39.3%) followed by MSRV (14.6%) and MSDV (12.4%). Identification of three different mastrevirus species in a confined geographical location on the same host, maize, is unprecedented, and suggests that Ethiopia may be one of the potential hot spots for diversity of maize-infecting mastreviruses.

Keywords: virus genomes; analysis; virus; zea mays; maize zea

Journal Title: Virus Genes
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.