LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Human Tracking Based on DPM Constrained Multiple-Kernel from a Moving Camera

Photo by paipai90 from unsplash

In this paper, we attempt to solve the challenging task of precise and robust human tracking from a moving camera. We propose an innovative human tracking approach, which efficiently integrates… Click to show full abstract

In this paper, we attempt to solve the challenging task of precise and robust human tracking from a moving camera. We propose an innovative human tracking approach, which efficiently integrates the deformable part model (DPM) into multiple-kernel tracking from a moving camera. The proposed approach consists of a two-stage tracking procedure. For each frame, we first iteratively mean-shift several spatially weighted color histograms, called kernels, from the current frame to the next frame. Each kernel corresponds to a part model of a DPM-detected human. In the second step, conditioned on the tracking results of these kernels on the later frame, we then iteratively mean-shift the part models on that frame. The part models are represented by histogram of gradient (HOG) features, and the deformation cost of each part model provided by the trained DPM detector is used to constrain the movement of each detected body part from the first step. The proposed approach takes advantage of not only low computation owing to the kernel-based tracking, but also robustness of the DPM detector without the need of laborious human detection for each frame. Experimental results have shown that the proposed approach makes it possible to successfully track humans robustly with high accuracy under different scenarios from a moving camera.

Keywords: robust human; part; multiple kernel; moving camera; camera; human tracking

Journal Title: Journal of Signal Processing Systems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.