LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automatic Non-Invasive Cough Detection based on Accelerometer and Audio Signals

Photo by kellysikkema from unsplash

We present an automatic non-invasive way of detecting cough events based on both accelerometer and audio signals. The acceleration signals are captured by a smartphone firmly attached to the patient’s… Click to show full abstract

We present an automatic non-invasive way of detecting cough events based on both accelerometer and audio signals. The acceleration signals are captured by a smartphone firmly attached to the patient’s bed, using its integrated accelerometer. The audio signals are captured simultaneously by the same smartphone using an external microphone. We have compiled a manually-annotated dataset containing such simultaneously-captured acceleration and audio signals for approximately 6000 cough and 68000 non-cough events from 14 adult male patients. Logistic regression (LR), support vector machine (SVM) and multilayer perceptron (MLP) classifiers provide a baseline and are compared with three deep architectures, convolutional neural network (CNN), long short-term memory (LSTM) network, and residual-based architecture (Resnet50) using a leave-one-out cross-validation scheme. We find that it is possible to use either acceleration or audio signals to distinguish between coughing and other activities including sneezing, throat-clearing, and movement on the bed with high accuracy. However, in all cases, the deep neural networks outperform the shallow classifiers by a clear margin and the Resnet50 offers the best performance, achieving an area under the ROC curve (AUC) exceeding 0.98 and 0.99 for acceleration and audio signals respectively. While audio-based classification consistently offers better performance than acceleration-based classification, we observe that the difference is very small for the best systems. Since the acceleration signal requires less processing power, and since the need to record audio is sidestepped and thus privacy is inherently secured, and since the recording device is attached to the bed and not worn, an accelerometer-based highly accurate non-invasive cough detector may represent a more convenient and readily accepted method in long-term cough monitoring.

Keywords: audio signals; audio; acceleration; non invasive; accelerometer audio

Journal Title: Journal of Signal Processing Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.