LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comparison of Short-Term Water Demand Forecasting Models

Photo from wikipedia

This paper presents a comparison of different short-term water demand forecasting models. The comparison regards six models that differ in terms of: forecasting technique, type of forecast (deterministic or probabilistic)… Click to show full abstract

This paper presents a comparison of different short-term water demand forecasting models. The comparison regards six models that differ in terms of: forecasting technique, type of forecast (deterministic or probabilistic) and the amount of data necessary for calibration. Specifically, the following are compared: a neural-network based model (ANN_WDF), a pattern-based model (Patt_WDF), two pattern-based models relying on the moving-window technique (αβ_WDF and Bakk_WDF), a probabilistic Markov chain-based model (HMC_WDF) and a naïve benchmark model. The comparison is made by applying the models to seven real-life cases, making reference to the water demands observed over 2 years in district-metered areas/water distribution networks of different sizes serving a different number and type of users. The models are applied in order to forecast the hourly water demands over a 24-h time horizon. The comparison shows that a) models based on different techniques provide comparable, medium-high forecasting accuracies, but also that b) short-term water demand forecasting models based on moving-window techniques are generally the most robust and easier to set up and parameterize.

Keywords: demand forecasting; water; term water; forecasting models; water demand; short term

Journal Title: Water Resources Management
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.