LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A sustainable multi-parametric sensors network topology for river water quality monitoring

Photo from wikipedia

The deterioration of water quality due to natural and man-made hazards has affected the life on the Earth. Hence, water quality needs to be monitored regularly. The traditional approaches for… Click to show full abstract

The deterioration of water quality due to natural and man-made hazards has affected the life on the Earth. Hence, water quality needs to be monitored regularly. The traditional approaches for monitoring are observed to be more expensive, time consuming with complex infrastructure and are less accurate. Therefore, there is a scope for improvement in monitoring approaches. For the purpose, the paper has presented multi-parametric sensors network topology (MPST). The topology has polyhedron infrastructure to observe the temporal and spatial variations like electrical conductivity, pH, temperature, chloride and dissolved oxygen; in shallow river water. Its main features are energy efficient, in-expensive infrastructure that requires less manpower, sustainable and can cope with varying currents of water. The MPST is tested at Sutlej river, Bassi, Ludhiana in India and the generated results are analyzed on various physical parameters. Further, it is compared with traditional sampling method for the accuracy. From the results, the topology is identified as an economical, scalable and convenient way for river water quality monitoring.

Keywords: topology; river water; water quality; water

Journal Title: Wireless Networks
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.