LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Network Coding Based Converge-Cast Scheme in Wireless Sensor Networks

Photo from wikipedia

The converge-cast in wireless sensor networks (WSNs) is widely applied in many fields such as medical applications and the environmental monitoring. WSNs expect not only providing routing with high throughput… Click to show full abstract

The converge-cast in wireless sensor networks (WSNs) is widely applied in many fields such as medical applications and the environmental monitoring. WSNs expect not only providing routing with high throughput but also achieving efficient energy saving. Network coding is one of the most promising techniques to reduce the energy consumption. By maximizing the encoding number, the message capacity per package can be extended to the most efficient condition. Thus, many researchers have focused their work on this field. Nevertheless, the packages sent by the outer nodes need to be temporary stored and delayed in order to maximize the encoding number. To find out the balance between inserting the delay time and maximizing the encoding number, a Converge-cast Scheme based on data collection rate prediction (CSRP) is proposed in this paper. To avoid producing the outdated information, a prediction method based on Modifying Index Curve Model is presented to deal with the dynamic data collection rate of every sensor in WSNs. Furthermore, a novel coding conditions based on CDS is proposed to increase the coding opportunity and to solve the collision problems. The corresponding analysis and experimental results indicate that the feasibility and efficiency of the CSRP is better than normal conditions without the prediction.

Keywords: converge; network coding; sensor networks; wireless sensor; converge cast

Journal Title: Wireless Personal Communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.