LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Backbone Network Traffic Prediction Based on Modified EEMD and Quantum Neural Network

Photo by dnevozhai from unsplash

Aiming at the long-range dependence and short-range dependence characteristics of backbone network traffic, a traffic forecasting model based on Modified Ensemble Empirical Mode Decomposition (MEEMD) and Quantum Neural Network (QNN)… Click to show full abstract

Aiming at the long-range dependence and short-range dependence characteristics of backbone network traffic, a traffic forecasting model based on Modified Ensemble Empirical Mode Decomposition (MEEMD) and Quantum Neural Network (QNN) is presented. Firstly, the MEEMD method is employed to decompose the traffic data sequence into intrinsic mode function (IMF) component. Then, the Quantum Neural Network is adopted to forecast the IMF components. Ultimately, the final prediction value is obtained via synthe-tizing the prediction results of all components. The QNN is composed of universal quantum gates and quantum weighted, and its learning algorithm employs the Modified Polak–Ribière–Polyak Conjugate Gradient method. The forecast results on real network traffic show that the proposed algorithm has a lower computational complexity and higher prediction accuracy than that of EMD and Auto Regressive Moving Average, EMD and Support Vector Machines, EEMD and Artificial Neural Networks method.

Keywords: traffic; network; quantum neural; prediction; network traffic

Journal Title: Wireless Personal Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.