LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Improved Least Squares Support Vector Machine in the Forecast of Daily Water Consumption

Photo from wikipedia

Abstract In order to better predict city daily water consumption to achieve the optimal scheduling of city water supply system, based on the research progress summarizing the city daily water… Click to show full abstract

Abstract In order to better predict city daily water consumption to achieve the optimal scheduling of city water supply system, based on the research progress summarizing the city daily water consumption forecasting at home and abroad, we take the predicted daily water consumption main influence factors and predicted daily related water use after noise reduction as input, and the predicted daily water consumption after noise reduction as output. In addition, we adopt the multiple scale chaos genetic with strong global search capability and faster search speed to optimize the parameters of least square support vector machine. Moreover, we establish a prediction model of daily water consumption of least squares support vector machine based on wavelet multiple scale chaos genetic. The case analysis results show that the model proposed in this paper has strong prediction ability, compared with the least square support vector machine prediction model based on multiple scale chaos genetic, least square support vector machine prediction model based on wavelet, and prediction model based on genetic least square support vector machine algorithm. At last, it is concluded that the improved least square support vector machine has good performance in the application in daily water consumption prediction.

Keywords: daily water; support vector; water; water consumption; vector machine

Journal Title: Wireless Personal Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.