LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wireless Sensor Network Path Optimization Using Sensor Node Coverage Area Calculation Approach

Photo by bladeoftree from unsplash

The proposed work is based on the path optimization approach for wireless sensor network (WSN). Path optimization is achieved by using the NSG 2.1 Tool, TCL Script file and NS2… Click to show full abstract

The proposed work is based on the path optimization approach for wireless sensor network (WSN). Path optimization is achieved by using the NSG 2.1 Tool, TCL Script file and NS2 simulator to improve the quality of service (QoS). Path optimization approach finds best suitable path between sensor nodes of WSN. The routing approach is not only the solution to improve the quality but also improves the WSN performance. The node cardinally is taken under consideration using the ad-hoc on demand distance vector routing protocol mechanism. Ad hoc approach emphasize on sensor nodes coverage area performance along with simulation time. NSG 2.1 Tool calculates the sensor node packet data delivery speed which can facilitate inter-node communication successfully. An experimental result verified that the proposed design is the best possible method which can escape from slow network response while covering maximum sensor nodes. It achieves coverage support in sensor node deployment. The result outcomes show best path for transferring packet from one sensor node to another node. The coverage area of sensor node gives the percentage of average coverage ratio of each node with respect to the simulation time.

Keywords: path optimization; coverage; sensor node; approach; sensor

Journal Title: Wireless Personal Communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.