LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

P2X7-mediated ATP secretion is accompanied by depletion of cytosolic ATP

Photo from wikipedia

ATP and its metabolites are important extracellular signal transmitters acting on purinergic P2 and P1 receptors. Most cells can actively secrete ATP in response to a variety of external stimuli… Click to show full abstract

ATP and its metabolites are important extracellular signal transmitters acting on purinergic P2 and P1 receptors. Most cells can actively secrete ATP in response to a variety of external stimuli such as gating of the P2X7 receptor. We used Yac-1 murine lymphoma cells to study P2X7-mediated ATP release. These cells co-express P2X7 and ADP-ribosyltransferase ARTC2, permitting gating of P2X7 by NAD+-dependent ADP-ribosylation without the need to add exogenous ATP. Yac-1 cells released ATP into the extracellular space within minutes after stimulation with NAD+. This was blocked by pre-incubation with the inhibitory P2X7-specific nanobody 13A7. Gating of P2X7 for 3 h significantly decreased intracellular ATP levels in living cells, but these had returned to normal by 20 h. P2X7-mediated ATP release was dependent on a rise in cytosolic calcium and the depletion of intracellular potassium, but was not blocked by inhibitors of pannexins or connexins. We used genetically encoded FRET-based ATP sensors targeted to the cytosol to image P2X7-mediated changes in the distribution of ATP in 3T3 fibroblasts co-expressing P2X7 and ARTC2 and in Yac-1 cells. In response to NAD+, we observed a marked depletion of ATP in the cytosol. This study demonstrates the potential of ATP sensors as tools to study regulated ATP release by other cell types under other conditions.

Keywords: mediated atp; atp; p2x7 mediated; p2x7; gating p2x7; depletion

Journal Title: Purinergic Signalling
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.