LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation

Photo from wikipedia

This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works… Click to show full abstract

This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a thin polymer membrane via platen displacement. Load induces a strain gradient on the top surface of the membrane where cells are cultured. A high performance poly-lactic acid 3D filament was used for printing, resulting in a compact, cost-effective device that is fully autoclavable and compatible with standard laboratory incubators. The device was customized to accommodate a loadable polydimethylsiloxane chip developed in our lab for culturing MLO-Y4 osteocytes; however, the design can be easily adapted to load any mechanosensitive cells grown on an elastomeric membrane. Using finite element analysis, we demonstrated that the device can generate a range of strains to induce a variety of responses by the osteocytes. Cell viability data demonstrated that these ranges had the ability to engender load-induced apoptotic differences.

Keywords: printed loading; cellular mechanotransduction; loading device; matrix deformation; device

Journal Title: Experimental Mechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.