It was reported that in vitro short-term exposure to PM2.5 caused different lung diseases through inflammatory response, immune toxicity, oxidative stress, and genetic mutations. However, the complex molecular biological mechanism… Click to show full abstract
It was reported that in vitro short-term exposure to PM2.5 caused different lung diseases through inflammatory response, immune toxicity, oxidative stress, and genetic mutations. However, the complex molecular biological mechanism for its toxicity had not been fully elucidated. Therefore, the present study investigated the cytotoxicity, oxidative damage, mitochondria damage, apoptosis, and cell cycle arrest of NX and QH PM2.5 in A549 cells. Further, cell cycle arrest-related gene levels in PM2.5-induced A549 cells were also detected. Our results suggested that PM2.5 reduced the cell viability in A549 cells. Simultaneously, excessive ROS decreased MMP levels and damaged mitochondrial membrane integrity and induced mitochondrial oxidative damage through the oxygen-dependent killer route, resulting in mitochondrial damage and cell apoptosis. Besides, the results also showed that PM2.5 induced A549 cell cycle alteration in G2/M phase after co-culture for 24 h. G2/M phase arrest was induced by upregulation of p53 and p21 and downregulation of CDK1 mRNA expression. In addition, lncRNA Sox2ot might play an important role as the specific oncogenes and it participated in G2/M phase arrest by regulating the expression of EZH2.
               
Click one of the above tabs to view related content.