LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fate and behavior of dissolved organic matter in a submerged anoxic-aerobic membrane bioreactor (MBR)

Photo from wikipedia

In this study, the production, composition, and characteristics of dissolved organic matter (DOM) in an anoxic-aerobic submerged membrane bioreactor (MBR) were investigated. The average concentrations of proteins and carbohydrates in… Click to show full abstract

In this study, the production, composition, and characteristics of dissolved organic matter (DOM) in an anoxic-aerobic submerged membrane bioreactor (MBR) were investigated. The average concentrations of proteins and carbohydrates in the MBR aerobic stage were 3.96 ± 0.28 and 8.36 ± 0.89 mg/L, respectively. After membrane filtration, these values decreased to 2.9 ± 0.2 and 2.8 ± 0.2 mg/L, respectively. High performance size exclusion chromatograph (HP-SEC) analysis indicated a bimodal molecular weight (MW) distribution of DOMs, and that the intensities of all the peaks were reduced in the MBR effluent compared to the influent. Three-dimensional fluorescence excitation emission matrix (FEEM) indicated that fulvic and humic acid-like substances were the predominant DOMs in biological treatment processes. Precise identification and characterization of low-MW DOMs was carried out using gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis indicated that the highest peak numbers (170) were found in the anoxic stage, and 54 (32%) compounds were identified with a similarity greater than 80%. Alkanes (28), esters (11), and aromatics (7) were the main compounds detected. DOMs exhibited both biodegradable and recalcitrant characteristics. There were noticeable differences in the low-MW DOMs present down the treatment process train in terms of numbers, concentrations, molecular weight, biodegradability, and recalcitrance.

Keywords: anoxic aerobic; bioreactor mbr; organic matter; dissolved organic; membrane bioreactor

Journal Title: Environmental Science and Pollution Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.