LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical investigations on the kinetics of Cl atom initiated reactions of series of 1-alkenes

Photo by kellysikkema from unsplash

The temperature-dependent rate coefficients were calculated for the reactions of Cl atoms with propene (R1), 1-butene (R2), 1-pentene (R3), and 1-hexene (R4) over the temperature range of 200–400 K. Canonical variational… Click to show full abstract

The temperature-dependent rate coefficients were calculated for the reactions of Cl atoms with propene (R1), 1-butene (R2), 1-pentene (R3), and 1-hexene (R4) over the temperature range of 200–400 K. Canonical variational transition state theory (CVT) with small curvature tunneling (SCT) and conventional transition state theory (CTST) in combination with MP2/6-31G(d,p), MP2/6-31G+(d,p), and MP2/6–311 + G(d,p) level of theories were used to calculate the kinetic parameters. The obtained rate coefficients at 298 K for the reactions of Cl atoms with propene, 1-butene, 1-pentene, and 1-hexene are 1.36 × 10−10 cm3 molecule−1 s−1, 1.53 × 10−10 cm3 molecule−1 s−1, 4.61 × 10−10 cm3 molecule−1 s−1, and 4.76 × 10−10 cm3 molecule−1 s−1, respectively. In all these reactions, strong negative temperature dependence was observed over the studied temperature range. Cl atom addition across the double bond is the most dominant pathway. The contribution of abstraction channels towards their global rate coefficients was observed to be increasing from propene to 1-hexane. Atmospheric implications such as effective lifetimes and thermodynamic parameters of the test molecules were investigated in the present study.

Keywords: cm3 molecule; rate coefficients; temperature; molecule cm3

Journal Title: Environmental Science and Pollution Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.