LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced bioreduction of nitrobenzene by reduced graphene oxide materials: effects of surface modification and coexisting soluble electron shuttles

Photo by cdc from unsplash

Reduced graphene oxide (rGO) can enhance the bioreduction of nitrobenzene by Shewanella oneidensis MR-1. The effects of surface modification and coexisting soluble electron shuttles on rGO-enhanced bioreduction of nitrobenzene were… Click to show full abstract

Reduced graphene oxide (rGO) can enhance the bioreduction of nitrobenzene by Shewanella oneidensis MR-1. The effects of surface modification and coexisting soluble electron shuttles on rGO-enhanced bioreduction of nitrobenzene were investigated here. The results showed that rGO enhanced the secretion of extracellular polymeric substance and the bioreduction of nitrobenzene of several folds. No inhibition effect on nitrobenzene bioreduction was observed even when the concentration of rGO was as high as 200 mg/L. The surface modification of rGO might affect the electrical conductivity which was assumed as one of the main factors that contributed to the enhancement of nitrobenzene bioreduction by rGO materials. Moreover, the coexisting electron shuttles further enhanced the rGO-mediated nitrobenzene bioreduction. After the simultaneous addition of flavin mononucleotide (10 μM) and rGO (50 mg/L), the reduction rate increased 7.8 times to 424.98 ± 7.84 mg (nitrobenzene)/(g (dry cell)∙h), which was higher than those ever reported.

Keywords: rgo; bioreduction; electron shuttles; bioreduction nitrobenzene; surface modification

Journal Title: Environmental Science and Pollution Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.