LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mucociliary transport, differential white blood cells, and cyto-genotoxicity in peripheral erythrocytes in fish from a polluted urban pond

Photo by fonsheijnsbroek_amsterdam_photos from unsplash

The present study evaluated the water quality of a polluted pond through the analysis of in vitro mucociliary transport, hematological parameters, and biomarkers of cyto-genotoxicity in the Nile tilapia (Oreochromis… Click to show full abstract

The present study evaluated the water quality of a polluted pond through the analysis of in vitro mucociliary transport, hematological parameters, and biomarkers of cyto-genotoxicity in the Nile tilapia (Oreochromis niloticus). Blood and mucus samples were collected from ten specimens from the polluted pond and from ten specimens from a control area. The fish were anesthetized with 3% benzocaine, mucus was collected directly from the gills, and blood was drawn from the caudal artery. Blood smears were stained using the May-Grünwald Giemsa process for the differential leukocyte counts and to determine the frequency of leukocytes, thrombocytes, erythroblasts, micronuclei, and nuclear abnormalities. The results revealed low transportability in vitro, a high percentage of monocytes and eosinophils, and increased frequency of leukocytes and nuclear abnormalities in fish from the polluted pond. However, the frequency of thrombocytes and erythroblasts and the percentage of lymphocytes and neutrophils were significantly lower. It is possible to conclude that changes in fish are due to poor water quality and that these non-destructive biomarkers can be used for the biomonitoring of aquatic environments vulnerable to contamination.

Keywords: mucociliary transport; pond; cyto genotoxicity; blood; fish polluted

Journal Title: Environmental Science and Pollution Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.