LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Safety assessment of gasification biochars using Folsomia candida (Collembola) ecotoxicological bioassays

Photo from wikipedia

Biochar is a product of the thermal decomposition of biomass under a limited supply of oxygen and can be deriving from pyrolysis or gasification. As the product is rich in… Click to show full abstract

Biochar is a product of the thermal decomposition of biomass under a limited supply of oxygen and can be deriving from pyrolysis or gasification. As the product is rich in highly recalcitrant carbon, it has been proposed as a soil amendment to improve soil fertility and to stock carbon in soils. However, the contaminant compounds present in biochar could represent potential environmental threats. The gasification biochar is a promising by-product, but its effects on soil microarthropods are still nearly unknown. The aim of this study was to assess, using a prognosis approach, any ecotoxicological consequences of four biochars (conifer, poplar, grape marc, and wheat straw) on the springtail Folsomia candida. This was assessed through a series of tests: an avoidance behavior test, a survival and reproduction test, and a test based on the hatching of eggs. Biochars were tested at different concentrations (pulverized and diluted w/w with an artificial standard soil). The results showed that the springtails did not tend to avoid the biochars’ substrates up to the rate of 2–5%, but any higher levels of concentration caused the animals to keep away from it. While mortality was negatively affected only in the grape marc biochar, reproduction was significantly reduced in all biochars considered. The hatching of the eggs was anticipated at even the lowest concentrations of herbaceous biochars, while a severe delay was observed in both concentrations tested of the conifer biochar. The endpoints considered were negatively affected by pH, polycyclic aromatic hydrocarbons, and heavy metals (in order of importance). The findings confirmed the potential adverse effects that gasification biochars could have on soil microarthropods and demonstrated the necessity of introducing these tests into biochar characterization protocols.

Keywords: gasification biochars; safety assessment; gasification; folsomia candida

Journal Title: Environmental Science and Pollution Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.