LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metal/metalloid content in plant parts and soils of Corylus spp. influenced by mining–metallurgical production of copper

Photo from wikipedia

The town of Bor and its surroundings (Serbia) have been under environmental pollution for more than a century, due to exploitation of large copper deposits. Naturally present Corylus spp. were… Click to show full abstract

The town of Bor and its surroundings (Serbia) have been under environmental pollution for more than a century, due to exploitation of large copper deposits. Naturally present Corylus spp. were sampled in the surroundings of the mine and flotation tailings at 12 sites distributed in six zones with different pollution loads, under the assumption that all the zones were endangered except for the background. As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn inputs from soil and the air were evaluated in plant parts, in terms of absorption, accumulation and indication abilities of Corylus spp. The obtained results showed that As and Cu were the most enriched elements in soil, and their concentration exceeded the limit and remediation values proposed by the regulation. Plant parts (root, branch, leaf and catkin) also showed enrichment of most studied elements in wide ranges. According to the enrichment factor for plant, metal/metalloid inputs, particularly in leaves, were from anthropogenic origin. Plant absorption which occurred at the soil–root interface was low, based on the bioaccumulation factor, which could be indicative of resistance mechanisms of root to abiotic stress induced by a high content of elements in soil substrate. The values of bioaccumulation coefficient suggested weak and intermediate absorption and exclusion abilities of Corylus spp. to the studied elements. Element concentrations differ in unwashed and washed leaves, as well as pollution loads in plant and soil samples from the background, traffic and the sites with clear mining–metallurgical influence. Therefore, Corylus spp. could be promising in biomonitoring studies.

Keywords: plant parts; plant; corylus spp; metal metalloid; mining metallurgical

Journal Title: Environmental Science and Pollution Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.