Surface-modified diatom substrates are employed for the development of immunocomplex-based optical biosensor for diagnosis of typhoid. Biosensor has been prepared by covalent immobilization of Salmonella typhi antibody onto the crosslinked… Click to show full abstract
Surface-modified diatom substrates are employed for the development of immunocomplex-based optical biosensor for diagnosis of typhoid. Biosensor has been prepared by covalent immobilization of Salmonella typhi antibody onto the crosslinked diatom substrates via glutaraldehyde. Photoluminescent (PL) studies revealed good specificity and ability of conjugated diatom substrates to distinguish complementary (S. typhi) and non-complementary (Escherichia coli) antigens. The immunocomplexed biosensor showed detection limit of 10 pg. The excellent performance of biosensor is associated to its large surface-to-volume ratio, good photoluminescent property, and biocompatibility of diatom frustules, which enhances the antibody immobilization and facilitates the nucleophilic electron transfer between antibody and conjugated diatom surface. Hence, immunocomplexed diatom substrates are considered to be a suitable platform for the environmental monitoring of water-borne pathogen S. typhi.
               
Click one of the above tabs to view related content.