Development of efficient techniques to combat the harmful effects of oil spill is an emerging field, where fabrication of new sorbents for selective removal of oil has become a hot… Click to show full abstract
Development of efficient techniques to combat the harmful effects of oil spill is an emerging field, where fabrication of new sorbents for selective removal of oil has become a hot topic for environmental scientists. The present study reports the preparation of superhydrophobic/oleophilic magnetic titania nanotubes via a facile hydrothermal method, followed by the treatment with octadecylamine, as potential magnetically driven sorbent for selective removal of oil from water surface. The magnetic nature (superparamagnetism at 300 K) of the nanotubes enabled magnetic removal of the oil-sorbed material from water surface. Wettability test of the material depicted a static water contact angle of 166 ± 1°, indicating its superhydrophobic character. Oil uptake experiments and contact angle measurements revealed its superoleophilicity with maximum oil sorption capacity >1.5 g/g for a variety of oils. In addition to the ease of magnetic removal, the nanotubes possess sufficient buoyancy, high selectivity, and quick rate of oil uptake and is more than five times reusable.
               
Click one of the above tabs to view related content.