LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identifying external nutrient reduction requirements and potential in the hypereutrophic Lake Taihu Basin, China

Photo from wikipedia

Reducing external nutrient loads is the first step for controlling eutrophication. Here, we identified external nutrient reduction requirements and potential of strategies for achieving reductions to remediate a eutrophic water… Click to show full abstract

Reducing external nutrient loads is the first step for controlling eutrophication. Here, we identified external nutrient reduction requirements and potential of strategies for achieving reductions to remediate a eutrophic water body, Lake Taihu, China. A mass balance approach based on the entire lake was used to identify nutrient reduction requirements; an empirical export coefficient approach was introduced to estimate the nutrient reduction potential of the overall program on integrated regulation of Taihu Lake Basin (hereafter referred to as the “Guideline”). Reduction requirements included external total nitrogen (TN) and total phosphorus (TP) loads, which should be reduced by 41–55 and 25–50%, respectively, to prevent nutrient accumulation in Lake Taihu and to meet the planned water quality targets. In 2010, which is the most seriously polluted calendar year during the 2008–2014 period, the nutrient reduction requirements were estimated to be 36,819 tons of N and 2442 tons of P, and the potential nutrient reduction strategies would reduce approximately 25,821 tons of N and 3024 tons of P. Since there is a net N remaining in the reduction requirements, it should be the focus and deserves more attention in identifying external nutrient reduction strategies. Moreover, abatement measures outlined in the Guideline with high P reduction potential required large monetary investments. Achieving TP reduction requirement using the cost-effective strategy costs about 80.24 million USD. The design of nutrient reduction strategies should be enacted according to regional and sectoral differences and the cost-effectiveness of abatement measures.

Keywords: reduction; external nutrient; lake taihu; nutrient reduction; reduction requirements

Journal Title: Environmental Science and Pollution Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.