A novel adsorbent, three-dimensional porous graphene/lignin/sodium alginate nanocomposite (denoted as 3D PG/L/SA) was fabricated by hydrothermal polymerization of lignin and sodium alginate in the presence of graphene oxide (GO) in… Click to show full abstract
A novel adsorbent, three-dimensional porous graphene/lignin/sodium alginate nanocomposite (denoted as 3D PG/L/SA) was fabricated by hydrothermal polymerization of lignin and sodium alginate in the presence of graphene oxide (GO) in an aqueous system. Fourier transform infrared spectra, thermo-gravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy were employed to characterize the morphology and structure of this novel functional PG/L/SA nanocomposite. A series of adsorption experiments for cleanup of Cd(II) and Pb(II) were conducted to investigate the effects of lignin and sodium alginate on the graphene structure. It was found that PG/L/SA showed a significant increase in adsorption capacity contrast to porous graphene (PG). The as-prepared material achieved the adsorption capacity for Cd(II) and Pb(II) of 79.88 and 226.24 mg/g, respectively. Meanwhile, the adsorption process matched well with the Langmuir isotherm model and the pseudo-second-order kinetic model. Studies were also conducted to demonstrate the applicability of the sorbent to the removal of heavy metal ions from metal smelting wastewater.
               
Click one of the above tabs to view related content.