LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced adsorption of uranium by modified red muds: adsorption behavior study

Photo from archive.org

Uranium is a hazardous and radioactive element. Effective removal of uranium from wastewater stream requires advanced functional materials and reliable technologies. Red mud is a type of low-cost adsorbent which… Click to show full abstract

Uranium is a hazardous and radioactive element. Effective removal of uranium from wastewater stream requires advanced functional materials and reliable technologies. Red mud is a type of low-cost adsorbent which is widely used in the adsorption process. In the present work, we successfully modified the raw red mud to gain a series of highly efficient sorbents for uranium removal. They are nitric acid dealkalized red mud (DRM), aluminum nitrate modified red mud (ARM), and ferric nitrate modified red mud (FRM). The adsorption efficiencies of uranium(VI) by DRM, ARM, and FRM were 74.50, 95.56, and 98.75% in their optimal immobilization regions, respectively. The chemisorption of uranium dominates the adsorption process of FRM, while as to physical adsorption dominates the adsorption process of ARM and DRM. Both DRM and ARM reached their maximum adsorption capacities at 10 min while that for FRM occurred at 30 min. FRM performed much stronger anti-interference ability to the influence of carbonate and calcium. The outstanding adsorption ability of these modified red muds is mainly due to the enhancement of ion exchange, co-precipitation, and electrostatic attraction by red mud’s active components and functional groups.

Keywords: adsorption; red mud; red muds; uranium; modified red

Journal Title: Environmental Science and Pollution Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.