LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphology-tunable tellurium nanomaterials produced by the tellurite-reducing bacterium Lysinibacillus sp. ZYM-1

Photo from wikipedia

Although tellurite is highly toxic to organisms, elemental tellurium nanomaterials (TeNMs) have many uses. The microbe-mediated reduction of tellurite to Te(0) has been shown to be a green and cost-effective… Click to show full abstract

Although tellurite is highly toxic to organisms, elemental tellurium nanomaterials (TeNMs) have many uses. The microbe-mediated reduction of tellurite to Te(0) has been shown to be a green and cost-effective approach for turning waste into wealth. However, it is difficult to tune the morphology of biogenic nanomaterials. In this study, a series of experiments was conducted to investigate the factors influencing tellurite reduction by the tellurite-reducing bacterium Lysinibacillus sp. ZYM-1, including pH, tellurite concentration, temperature, and heavy metal ions. The optimal removal efficiency of tellurite was respectively achieved at pH 8, 0.5 mM tellurite, and 40 °C. All of the tested metal ions retarded the reduction of tellurite, especially Cd2+ and Co2+, which completely inhibited its reduction. Further characterization of the biogenic TeNMs indicated that their morphology could be tuned by the tellurite concentration, pH, temperature, and organic solvents used. Regular Te nanosheets were produced using 5 mM tellurite. The TeNMs were primarily synthesized in the cell membrane. Hexagonal Te nanoplates, nanorods, nanoflowers, and nanobranches were synthesized when combining membrane fractions with tellurite and NADH. The diverse morphologies are assumed to be induced by the synergy between the reduction kinetics and the protein structure. Therefore, this study confirmed that the bacterium can tune the morphology of TeNMs, broadening the potential application of biogenic TeNMs.

Keywords: reduction; tellurite reducing; morphology; reducing bacterium; tellurium nanomaterials

Journal Title: Environmental Science and Pollution Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.