LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An investigation of the effects of capping on internal phosphorus release from sediments under rooted macrophytes (Phragmites australis) revegetation

Photo by abeosorio from unsplash

In eutrophic lake restorations, in situ capping is an often considered method to control sediment internal phosphorus (P) pollution for mitigating eutrophication status. Subsequent aquatic macrophyte revegetation can directly derive… Click to show full abstract

In eutrophic lake restorations, in situ capping is an often considered method to control sediment internal phosphorus (P) pollution for mitigating eutrophication status. Subsequent aquatic macrophyte revegetation can directly derive P from the sediment for growth. However, the effects of capping with clean soils on internal P release from sediments under rooted aquatic macrophyte revegetation are still unclear. In the present study, the influences of sediment P remobilization by P. australis revegetation on P inactivation by capping were investigated based on an entire growth simulation study. Our findings showed during the growth of P. australis, tests conducted on total phosphorous (TP), calcium-bound P (Ca-P), loosely bound P (loose-P), organic P (Org-P), and iron-adsorbed P (Fe-P) found significant changes (p < 0.001). Specifically, the mean contents of TP and Ca-P decreased by 291.1 and 224.2 mg kg−1, respectively, while those of Fe-P increased from 26.4 to 124.8 mg kg−1. In addition, sediment mobile-P contents increased coincidentally with the growth of P. australis during the whole course of experiment. Further analysis indicated calculated diffusion fluxes of soluble reactive phosphorus (SRP) generally increased with incubation time, although capping effectively induced the reduction of SRP concentration in pore water and its release to waters. Therefore, sediment P remobilization by P. australis revegetation was able to enhance P lability in lake sediments, with intermediate activation ability compared to other correlated water bodies. This phenomenon was most likely attributed to solubilization of sediment P by organic acids secreted from P. australis rhizosphere. Overall, sediment P remobilization by rooted macrophytes is unfavorable for capping to control internal P release to water column during eutrophic lake restorations.

Keywords: effects capping; australis revegetation; internal phosphorus; revegetation; release

Journal Title: Environmental Science and Pollution Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.