LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of graphene by in situ catalytic chemical vapor deposition of reed as a carbon source for VOC adsorption

Photo from wikipedia

AbstractFew-layer graphene was synthesized by in situ catalytic carbon vapor deposition (CCVD) method, using reed as a carbon source and Ni, Cu, and Mg salts as the catalyst compounds. The… Click to show full abstract

AbstractFew-layer graphene was synthesized by in situ catalytic carbon vapor deposition (CCVD) method, using reed as a carbon source and Ni, Cu, and Mg salts as the catalyst compounds. The synthesized graphene was also used for adsorption of VOCs. Furthermore, the effect of organic additives, sorbitol, and citric acid on catalyst compounds was investigated by temperature-programmed reduction analysis (H2-TPR). The products’ properties were characterized by thermo-gravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) surface area analysis. TEM and FE-SEM images confirmed the formation of graphene sheets. Activation of the graphene by phosphoric acid at 500 °C and then by CO2 at 800 °C increased the surface area from 298 to 568 m2/g. Gasoline working capacity of the activated graphene was 65.24 g/ladsorbent. Graphical abstractFew-layer graphene was synthesized by in situ catalytic carbon vapor deposition (CCVD) method using reed as a carbon source and Ni, Cu, and Mg salts as the catalyst compounds and used for adsorption of VOCs.

Keywords: situ catalytic; carbon; microscopy; reed carbon; graphene; vapor deposition

Journal Title: Environmental Science and Pollution Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.