LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Long-term spatiotemporal variations of aerosol optical depth over Yellow and Bohai Sea

Photo from wikipedia

In this study, MODerate resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1) level-2 Dark Target (DT) Aerosol Optical Depth (AOD) observations at 550 nm (AOD550) for the highest quality flag assurance (QA = 3)… Click to show full abstract

In this study, MODerate resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1) level-2 Dark Target (DT) Aerosol Optical Depth (AOD) observations at 550 nm (AOD550) for the highest quality flag assurance (QA = 3) were obtained to analyze spatiotemporal variations of aerosol optical properties over the Yellow and the Bohai Sea from 2002 to 2017. Spectral AOD observations at 470 nm (AOD470) and 660 nm (AOD660) were obtained to calculate Angstrom Exponent (AE470–660) and classify the aerosol types including clean continental (CC), clean maritime (CM) biomass and urban industrial (BUI), dust (D), and mixed (MXD) aerosol types. Results showed a very distinct spatial pattern of AOD distribution over the Bohai Sea which looks suspicious, i.e., high aerosol loadings (AOD > 0.8) throughout the entire time period, whereas relative low AOD distribution was observed over the adjacent land pixels especially in autumn and winter, which suggested that the DT algorithm might be influenced by a large number of sediments located in the Bohai Sea. Significant differences in spatial distributions were found in different seasons in terms of area coverage as a maximum number of pixels were available during autumn, and regional high and low aerosol loadings were observed during autumn and summer, respectively. Trend analysis from 2002 to 2017 showed that AOD was increased up to 0.04 over the Bohai Sea and decreased up to 0.04 over the Yellow Sea, and this trend varies from month to month. Aerosol classification showed significant contributions of BUI and CC over the region, and contributions of CM, DUST, and MXD aerosols over the Yellow Sea were relatively high compared to the Bohai Sea.

Keywords: spatiotemporal variations; sea; aerosol optical; bohai sea; optical depth

Journal Title: Environmental Science and Pollution Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.