LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Short-term stability assessment for the analysis of emerging contaminants in seawater

Photo from wikipedia

This paper describes the stability study performed in seawater and seawater extracts (spiked at ~ 200 ng/L) for 23 emerging contaminants. Four different alternatives were tested at six different times (0, 3,… Click to show full abstract

This paper describes the stability study performed in seawater and seawater extracts (spiked at ~ 200 ng/L) for 23 emerging contaminants. Four different alternatives were tested at six different times (0, 3, 10, 17, 24 and 31 days): (i) seawater at 4 °C, (ii) mixed-mode solid-phase extraction cartridge (Bond Elute Plexa and Strata X-AW) stored at − 20 °C, (iii) polyethersulfone hollow fibre stored at − 20 °C and (iv) methanol extracts once the samples were extracted from PES hollow fibre and stored at − 20 °C. Moreover, the integrity of the supporting polymeric phases was studied by Raman, optical microscopy, differential scanning calorimetric and thermogravimetric analysis. As may be expected, seawater samples showed the lowest stability (losses between 21 and 99%) while methanol extract provides stable results (losses < 30%) over the tested period. In the case of solid-phase cartridges, the stability profile showed an average loss of 7% while, in polyethersulfone hollow fibres, losses up to 58% were observed. Finally, we were able to relate the lower efficiency of polyethersulfone fibres with the wettability of this material based on the thermogravimetric analysis.

Keywords: emerging contaminants; analysis; stability assessment; stability; short term; term stability

Journal Title: Environmental Science and Pollution Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.