LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of 1,3-propanediol production by twoCitrobacter freundiistrains using crude glycerol and soybean cake hydrolysate

Photo by austriannationallibrary from unsplash

Biodiesel production processes using soybean as feedstock generates soybean cake and crude glycerol as by-products. These by-product streams were used as sole feedstocks for the production of 1,3-propanediol (PDO) using… Click to show full abstract

Biodiesel production processes using soybean as feedstock generates soybean cake and crude glycerol as by-products. These by-product streams were used as sole feedstocks for the production of 1,3-propanediol (PDO) using two bacterial strains of Citrobacter freundii. Soybean cake has been converted into a nutrient-rich hydrolysate by crude enzymes produced via solid state fermentation. The effect of initial glycerol and free amino nitrogen concentration on bacterial growth and PDO production has been evaluated in batch bioreactor cultures showing that C. freundii VK-19 is a more efficient PDO producer than C. freundii FMCC-8. The cultivation of C. freundii VK-19 in fed-batch bioreactor cultures using crude glycerol and soybean cake hydrolysates led to PDO concentration of 47.4 g/L with yield and productivity of 0.49 g/g and 1.01 g/L/h, respectively. The effect of PDO, metabolic by-products, and sodium and potassium salts on bacterial growth was evaluated showing that potassium salts initially enhance bacterial growth, whereas sodium salts cause significant inhibition to bacterial growth. Soybean cake hydrolysate and crude glycerol could be utilized for PDO production, but the fermentation efficiency is influenced by the catalyst used during biodiesel production.

Keywords: production; crude glycerol; hydrolysate; bacterial growth; soybean cake

Journal Title: Environmental Science and Pollution Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.