A distinctive process (BCE-MFC) was developed to explore the methyl orange (MO) degradation and simultaneous bioelectricity generation based on the functional collaboration of biofilm, electrolysis, constructed wetland, and microbial fuel… Click to show full abstract
A distinctive process (BCE-MFC) was developed to explore the methyl orange (MO) degradation and simultaneous bioelectricity generation based on the functional collaboration of biofilm, electrolysis, constructed wetland, and microbial fuel cell. The biofilm-cathode electrode–microbial fuel cell (BCE-MFC) was capable of sustaining an excellent MO removal (100%) and bioelectricity production (0.63 V). BCE significantly enhanced MO biodegradability, thus resulting in a 56.3% improvement of COD removal in subsequent MFC. Bacillus was dominant in biofilm on cathode in BCE. In MFC, Proteobacteria phylum (64.84%) and Exiguobacterium genus (13.30%) were predominated in the anode region, probably basically responsible for electricity generation. Interestingly, relatively high content of Heliothrix sp. (9.94%) was found in the MFC designed here, which was likely to participate in electricity production as well. The proposed functional collaboration may be an effective strategy in refractory wastewater treatment and power production.
               
Click one of the above tabs to view related content.