LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance and working mechanism of a novel anaerobic self-flotation reactor for treating wastewater with high suspended solids

Photo from wikipedia

The new design of internal flotation components and the use of biogas were employed to develop a novel anaerobic self-flotation (ASF) reactor. Compared with the upflow anaerobic sludge blanket (UASB)… Click to show full abstract

The new design of internal flotation components and the use of biogas were employed to develop a novel anaerobic self-flotation (ASF) reactor. Compared with the upflow anaerobic sludge blanket (UASB) reactor, the removal efficiencies of total chemical oxygen demand (COD) and suspended solids (SS) of the ASF reactor were higher than 90% under high SS concentration and high volumetric organic loading rate (OLR). The biogas flotation, sludge bed retention, and effluent washout accounted for 60%, 30%, and 10% of SS mass, respectively, proving that the biogas flotation was the main mechanism of SS removal in the ASF reactor. Extracellular polymer substance, mainly consisting of polysaccharide (PS) and protein (PN), was found to promote the SS removal by biogas flotation via the scum formation at the ratio of 294.12 g-VS/g-PS and 103.09 g-VS/g-PN. The EPS yield was determined as 2.3 ± 0.6 g-PS/g-COD and 11.5 ± 2.6 g-PN/g-COD at the OLR of 60 kg/(m3 day). The biogas production was revealed to enhance the SS removal by providing flotation driving force and by decreasing the scum density. A model was established to describe the quantitative relationship between flotation scum and OLR. This work would shed light on the high SS wastewater treatment challenge of high-rate anaerobic processes by using biogas flotation.

Keywords: novel anaerobic; anaerobic self; flotation; self flotation; suspended solids; reactor

Journal Title: Environmental Science and Pollution Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.