LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Achieving stable and efficient single-stage deammonification using plug flow reactor

Photo from wikipedia

The deammonification process is a promising technology, while achieving stable performance is still a challenge for domestic sewage treatment. To investigate the stability of deammonification in the plug flow system,… Click to show full abstract

The deammonification process is a promising technology, while achieving stable performance is still a challenge for domestic sewage treatment. To investigate the stability of deammonification in the plug flow system, which can be updated from A/O or A/A/O bioreactor, a plug flow fixed biofilm reactor was started-up and fed with synthetic low-strength wastewater. As a result, average ammonium removal efficiency of 90.0 ± 10.0% and total nitrogen removal efficiency of 79.4 ± 9.3% were achieved, while the nitrate production ratio (∆Nitrate/∆Ammonium) was at superior levels (9.5 ± 3.4%). Candidatus Jettenia and Candidatus Brocadia were the anammox bacteria in this reactor, and Candidatus Jettenia was the predominant anammox bacteria. Anammox bacteria were dominated in three of the four sampling points except the first one. Relative abundance of NOB increased along the reactor. The result of the present work implied that the plug flow system was able to maintain stable deammonification process, and NOB was suppressed by higher residual ammonium concentration in the front of reactor while the suppression weakened along the reactor.

Keywords: deammonification; achieving stable; reactor; plug flow

Journal Title: Environmental Science and Pollution Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.