This study investigates the feasibility of recovery of phosphorus via struvite precipitation from a synthetic anaerobically treated distillery spent wash by optimizing the process using a chemical equilibrium model, namely… Click to show full abstract
This study investigates the feasibility of recovery of phosphorus via struvite precipitation from a synthetic anaerobically treated distillery spent wash by optimizing the process using a chemical equilibrium model, namely Visual MINTEQ. Process parameters such as Mg2+, PO43−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{PO}}_4^{3-} $$\end{document}, and NH4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{NH}}_4^{+} $$\end{document} ion concentrations and pH were used as inputs into the model. Increasing the molar ratio of Mg2+:PO43−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{Mg}}^{2+}:{\mathrm{PO}}_4^{3-} $$\end{document} from 0.8:1 to 1.6:1 at pH 9 led to an increase in phosphate recovery from 88.2 to 99.5%. The model and experimental results were in good agreement in terms of phosphate recovery, indicating that the Visual MINTEQ model can be used to pre-determine the process parameters for struvite synthesis. Increasing the concentration of calcium ion adversely affected the synthesis and purity of struvite, whereas the presence of melanoidins had no significant impact. This study demonstrates that phosphorus recovery through struvite precipitation is a sustainable approach to reclaim phosphorus from high-strength industrial wastewater.
               
Click one of the above tabs to view related content.