LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Cr(VI) exposure on electrocardiogram, myocardial enzyme parameters, inflammatory factors, oxidative kinase, and ATPase of the heart in Chinese rural dogs

Photo from wikipedia

Heavily chromium-polluted areas, where people are prohibited from entering, are paradises for stray dogs. In this study, stray dogs were used to study the effects of chromium exposure on the… Click to show full abstract

Heavily chromium-polluted areas, where people are prohibited from entering, are paradises for stray dogs. In this study, stray dogs were used to study the effects of chromium exposure on the heart of dogs in severely Cr(VI)-contaminated rural areas of China. The dogs were given water (control), low dose (L, 0.92 mg/kg), medium dose (M, 1.15 mg/kg), and high dose (H, 1.38 mg/kg) of Cr(VI). The changes of electrocardiogram (ECG), myocardial enzyme parameters, inflammatory factors, oxidative kinase, and ATPase were measured to determine the toxicity of chromium on the heart of dogs. Results showed that the ST segment of ECG increased significantly, and the amplitude of T wave increased in the experimental group. The myocardial enzyme (CK-MB, AST, CK, and LDH) content in groups M and H increased significantly over time. The values of CAT, T-SOD, IL-10, and ATPase (K+-Na+-ATPase and Ca2+-Mg2+-ATPase) decreased with the increase of Cr(VI) dose, and the content of MDA, IL-1β, IL-8, and TNF-α increased with the increase of Cr(VI) dose. Our study suggested that the heart of Chinese rural dog was damaged by Cr(VI), and Cr(VI) could cause oxidative damage and alteration of ATPase content in dogs.

Keywords: heart; atpase; enzyme parameters; myocardial enzyme; parameters inflammatory

Journal Title: Environmental Science and Pollution Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.