LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A rapid experimental protocol to determine the desorption resistant fraction of sediment-sorbed hydrophobic organic contaminants

Photo by itfeelslikefilm from unsplash

Desorption of hydrophobic organic contaminants (HOCs) from sedimentary materials plays a vital role in dictating the fate and transport of HOCs in the environment. Desorption irreversibility is a commonly observed… Click to show full abstract

Desorption of hydrophobic organic contaminants (HOCs) from sedimentary materials plays a vital role in dictating the fate and transport of HOCs in the environment. Desorption irreversibility is a commonly observed phenomenon in laboratory sorption/desorption studies of HOCs. A desorption-resistant fraction (DRF) typically exists during the desorption process. To correctly evaluate the DRF of HOCs can considerably contribute to the understanding of availability and bioavailability of HOCs. This can substantially benefit contaminant remediation and cleanup operations. Conventional batch method to measure the DRF replies on repetitive washing of the sediments, which is time-consuming and can be impractical. This study presents an experimental protocol to quantify the DRF of the sediment-sorbed organic contaminants in a rapid manner. This protocol utilizes cosolvent to expedite desorption kinetics and adopts an ultrafiltration/centrifugation combined method to achieve a complete separation of sediment and solution phases. This proposed experimental protocol can facilitate the quantification of the DRF of sorbed contaminants to understand and minimize the uncertainties associated with risk-based pollution remediation approach. This protocol has the potential to be widely used in environmental studies to characterize sorption and desorption properties of HOCs with soil and sedimentary materials.

Keywords: sediment; protocol; organic contaminants; hydrophobic organic; desorption; experimental protocol

Journal Title: Environmental Science and Pollution Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.