LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diosmin ameliorative effects on oxidative stress and fibrosis in paraquat-induced lung injury in mice

Photo by markusspiske from unsplash

Paraquat (PQ) induces pulmonary fibrosis, a progressive lung disorder resulting in severe respiratory failure and death. Increased oxidative stress, inflammatory reactions, and multiple fibrotic lesions are major features of PQ-induced… Click to show full abstract

Paraquat (PQ) induces pulmonary fibrosis, a progressive lung disorder resulting in severe respiratory failure and death. Increased oxidative stress, inflammatory reactions, and multiple fibrotic lesions are major features of PQ-induced lung injury. Diosmin (Dio) is a safe drug that is available for clinical use for vascular disorders. Dio exhibits antioxidant, anti-inflammatory, and antifibrotic activities. Accordingly, the aim of this study was to evaluate the protective effect of diosmin on PQ-induced lung injury in mice and the underlying mechanisms involved. Lung injury was induced by PQ (30 mg/kg, intraperitoneally) in NMRI albino mice and Dio (50 and 100 mg/kg, gavage) was administrated 3 days before PQ and continued for 10 or 24 days. After euthanizing the mice, the biochemical and histopathological markers of lung tissue were determined. PQ significantly increased oxidative stress, inflammatory, and fibrotic markers. PQ increased the level of malonedaldehyde (MDA) and hydroxyproline (HYP) and decreased the level of glutathione (GSH) and catalase activity in the lung. Dio (50 and 100 mg/kg) significantly increased GSH levels and catalase activity and decreased HYP content and MDA levels. In addition, Dio reduced histopathological injuries in hematoxylin and eosin–stained and Masson’s trichrome–stained sections. These findings suggest that Dio has protective effects against PQ-induced lung injury, which may be due to its antioxidant, anti-inflammatory, and antifibrotic effects.

Keywords: induced lung; diosmin; lung injury; injury; oxidative stress

Journal Title: Environmental Science and Pollution Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.