LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay–based adsorbent

Photo from wikipedia

Adsorption capacity and percentage removal efficiency of Cu(II) and Ni(II) ions were studied and compared between raw kaolinite and acid-activated kaolinite. Acid-activated kaolin was prepared by refluxing raw kaolinite with… Click to show full abstract

Adsorption capacity and percentage removal efficiency of Cu(II) and Ni(II) ions were studied and compared between raw kaolinite and acid-activated kaolinite. Acid-activated kaolin was prepared by refluxing raw kaolinite with concentrated sulphuric acid followed by calcination to enhance its surface properties and adsorption ability. Both raw and acid-activated kaolinite samples were characterized by Fourier transform infrared spectroscopy, energy dispersive X-ray, scanning electron micrograph and zeta potential analysis. Upon acid treatment, acid-activated kaolinite was discovered to have altered chemical composition and larger BET surface area as compared with raw kaolinite. The batch adsorption studies on aqueous solution were performed under different factors such as contact time, pH condition, adsorbent dosage, initial metal ion concentration and temperature. The optimum condition was selected for each factor including a contact time of 60 min, pH of 7.0, adsorbent dosage of 0.1 g, initial metal ion concentration of 100 mg/L and temperature of 25 °C. Then, the adsorption studies on wastewater samples were carried out at the selected optimum conditions. Acid-activated kaolinite always had better adsorption capacity and percentage removal efficiency than raw kaolinite due to the increasing amount of negative charges on the adsorbent surface and the number of metal ion binding sites upon acid treatment. The adsorption kinetic obtained was well described by the pseudo-second-order model, whereas the adsorption isotherms obtained were well described by either the Freundlich or the Langmuir adsorption model. The results showed that acid-activated kaolinite adsorbent is a better option as a favourable and feasible commercial low-cost adsorbent for wastewater treatment.

Keywords: adsorption; acid activated; metal; raw kaolinite; kaolinite; activated kaolinite

Journal Title: Environmental Science and Pollution Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.