LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production

Photo from wikipedia

The microbial fuel cell coupled constructed wetland (CW-MFC) was used for treatment sewage and simultaneously generating electricity. The main aim of this study was to explore the optimal conditions for… Click to show full abstract

The microbial fuel cell coupled constructed wetland (CW-MFC) was used for treatment sewage and simultaneously generating electricity. The main aim of this study was to explore the optimal conditions for the treatment of hexavalent chromium (Cr (VI)) wastewater by the CW-MFC system. The performance of CW-MFC in removing Cr (VI) and chemical oxygen demands (COD) contained in wastewater and its electricity generation were studied. Electrode spacing, Cr (VI) and COD concentration, and hydraulic retention time (HRT) had certain effects on the performance of CW-MFC. For the electrode spacing of 10 cm, the highest power density of 458.2 mW/m 3 could be obtained with the influent concentration of Cr (VI) (60 mg/L) and COD (500 mg/L). The highest Cr (VI) and COD removal rate were obtained with the HRT of 3 days. Compared with CW system, the electrical energy generated in CW-MFC was beneficial to improving the removal efficiency of COD and Cr (VI). Thus, the results confirmed that CW-MFC is a promising technology to remove Cr (VI) from wastewater and achieve bioelectricity production simultaneously.

Keywords: fuel cell; cell coupled; constructed wetland; electricity; microbial fuel; performance

Journal Title: Environmental Science and Pollution Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.