LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Melt-spun modified poly (styrene-co-butyl acrylate) fiber as a carrier to support manganese oxide and its application in dye wastewater decolorization

Photo from wikipedia

Polymer fiber, a kind of versatile material, has been widely used in many fields. However, emerging applications still urge us to develop some new kinds of fibers. Advanced oxidation processes… Click to show full abstract

Polymer fiber, a kind of versatile material, has been widely used in many fields. However, emerging applications still urge us to develop some new kinds of fibers. Advanced oxidation processes (AOPs) have created a promising prospect for organic wastewater decontamination; thus, it is of important significance to design a kind of special fiber that can be applied in AOPs. In this work, a viable route is proposed to fabricate manganese oxide-supporting melt-spun modified poly (styrene-co-butyl acrylate) fiber, and the prepared fiber has an excellent activity to catalyze H 2 O 2 and O 3 to decolorize dye-containing water. The results show that the decolorization of a cationic blue solution can be completely accomplished within 10 min with the prepared fiber as a catalyst, and its decolorization efficiency can reach up to 96.2% within 40 min. The concentration of total organic carbon can decrease from 20.3 to 12.3 mg/L. The prepared fiber can be reused five times without any loss in decolorization efficiency. Compared with other manganese oxide-based catalysts reported in the literature, the prepared fiber also shows many advantages in decolorizing methylene blue such as easy separation, mild reaction condition, and high decolorization efficiency. Therefore, we are confident that the fiber introduced in this study will exhibit a great application potential in the field of dye wastewater treatment.

Keywords: manganese oxide; melt spun; fiber; wastewater; dye; decolorization

Journal Title: Environmental Science and Pollution Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.