LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The performance of micro-meso-pore HY zeolite for supporting Mo toward oxidation of dibenzothiophene

Photo by tyronesand from unsplash

A uniformly distribution of 3 wt.% Mo (with tetrahedral coordination) on a commercial HY zeolite having both micro- and meso-pores, provided a new active catalyst which resulted 100% removal of… Click to show full abstract

A uniformly distribution of 3 wt.% Mo (with tetrahedral coordination) on a commercial HY zeolite having both micro- and meso-pores, provided a new active catalyst which resulted 100% removal of DBT in this work. Respectively, H 2 O 2 and acetonitrile were used as the oxidant and extraction solvent for oxidative desulfurization (ODS) at a mild condition. The structure of three-dimensional meso-pores, despite major micro-pores, was proved to be intriguing for the use of acidic HY zeolite as a support material in this process. The catalyst samples were characterized by different analyses of XRPD, XRF, FTIR, SEM, EDX, TEM, N 2 adsorption desorption, BET, BJH, UV-vis, and NH 3 -TPD. High amounts of Mo were not in favor of the catalytic performance because of increasing non-framework polymolybdate formation, which led to decreasing meso-pore volume. Acid sites strength also decreased by increasing Mo content. The Mo active sites at a low loading of 3 wt.% reached the best performance for the complete removal of DBT ( t = 90 min, T = 60 °C, catalyst/fuel = 8 g/L, O/S = 2, V Solvent / V Oil = 1/2, DBT = 1000 ppm), mainly due to the presence of isolated Mo species in the framework of HY. The efficiency still reached to 90% after recycling the catalyst three times. The reusability of catalyst revealed the adsorption of the aqueous phase by this hydrophilic catalyst during the process being as a major deactivation factor. This was significantly diminished via a subsequent washing by acetonitrile.

Keywords: meso; meso pore; micro meso; performance; catalyst

Journal Title: Environmental Science and Pollution Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.