LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Removal of organic dyes from wastewater using Eichhornia crassipes: a potential phytoremediation option

Photo from wikipedia

Wastewater from textile industries is a potential source of organic dyes in natural water bodies. Environmental concerns of chemical methods for removal of dyes from wastewater are no more a… Click to show full abstract

Wastewater from textile industries is a potential source of organic dyes in natural water bodies. Environmental concerns of chemical methods for removal of dyes from wastewater are no more a viable solution, and there is growing concern to develop alternative approaches such as green chemistry and phytoremediation. This study reports the removal of organic dyes from wastewater using Eichhornia crassipes (Mart.) Solms (water hyacinth), as an easily available and fast-growing plant species. Growth of water hyacinth among individual cationic (rose bengal (RB), methylene blue (MB), crystal violet (CV), auramine O (AO), rhodamine B (RhB) and anionic (xylenol orange (XO), phenol red (PR), cresol red (CR), methyl orange (MO)) dye solutions and degradation of dyes were monitored. Results indicated that water hyacinth has good absorption and degradation potential for both types of dyes (cationic or anionic) and effectively removes dyes from solution. Water hyacinth can be used as a suitable and effective phytoremediate for removal of organic dyes from the wastewater. Graphical abstract

Keywords: water; removal organic; organic dyes; dyes wastewater

Journal Title: Environmental Science and Pollution Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.