LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Poly-γ-glutamic acid bioproduct improves the coastal saline soil mainly by assisting nitrogen conservation during salt-leaching process

Photo from wikipedia

Salt-leaching is considered to be a major method for soil desalting in agriculture. Therefore, conservation of soil nutrition is significant to soil fertility and environment protection during the salt-leaching process.… Click to show full abstract

Salt-leaching is considered to be a major method for soil desalting in agriculture. Therefore, conservation of soil nutrition is significant to soil fertility and environment protection during the salt-leaching process. The effect of poly-γ-glutamic acid bioproduct (PGAB), which was manufactured by solid-state fermentation with the bacteria producing glutamic acid (GA) and poly-γ-glutamic acid (γ-PGA) and organic waste, on keeping nitrogen (N) during salt-leaching was investigated in this study. The isolated bacteria producing GA and γ-PGA were identified as Brevibacterium flavum and Bacillus amyloliquefaciens, respectively. After the saline soil was leached for 90 days, compared to the control, soil salinity (0–30 cm) in the PGAB treatment was decreased by 39.9%, while soil total N was significantly (P < 0.05) higher than other treatments. Furthermore, the microbial biomass N (0–30 cm) in PGAB treatment was increased by 119.5%; populations of soil total bacteria, fungi, actinomyces, nitrogen-fixing bacteria, ammonifying bacteria, nitrifying bacteria, and denitrifying bacteria and soil algae biomass were also significantly (P < 0.05) increased. In terms of physical properties, the percentage of soil aggregates with diameter > 0.25 mm was increased by 293.5%, and the soil erosion-resistance coefficient was increased by 50.0%. In conclusion, the PGAB can effectively conserve soil N during the process of salt-leaching and therefore offer a sustainable way to improve coastal saline soil.

Keywords: salt leaching; soil; poly glutamic; glutamic acid

Journal Title: Environmental Science and Pollution Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.