LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on the co-effect of maifanite-based photocatalyst and humic acid in the photodegradation of organic pollutant

Photo by joshuafernandez from unsplash

In this study, the co-effect of clay mineral-based photocatalyst and humic acid on the photodegradation of dye was revealed for the first time. The clay mineral-based photocatalyst, maifanite/g-C3N4, was prepared… Click to show full abstract

In this study, the co-effect of clay mineral-based photocatalyst and humic acid on the photodegradation of dye was revealed for the first time. The clay mineral-based photocatalyst, maifanite/g-C3N4, was prepared using the co-calcining method. The physical and chemical properties of the maifanite/g-C3N4 photocatalysts with various ratios were characterized by multiple characterization methods, including SEM, XPS, BET, UV-Vis, FTIR, contact angle, and XRD. The respective degradation experiment of humic acid and RhB was performed using maifanite/g-C3N4 photocatalysts. The degradation process of mixture solution of humic acid and RhB was measured using EEM and UV-vis. The result indicates that in the presence of humic acid, low ratio of maifanite/g-C3N4 inhibits the production of by-products derived from the interaction of humic acid and the degradation of RhB. However, high ratio of maifanite/g-C3N4 is not conducive to the degradation of RhB. The ratio of 1:3 for maifanite/g-C3N4 is optimal for the photodegradation of RhB in the presence of humic acid. This article provides a new perspective to develop the co-effect of clay mineral and humic acid in the photodegradation of organic pollutant.

Keywords: maifanite c3n4; photodegradation; based photocatalyst; acid; humic acid

Journal Title: Environmental Science and Pollution Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.