Using copper nitrate trihydrate as the copper source, TiO2@Cu-MOF nanocomposites were prepared by a one-step crystallization method, and the effect of the amount of TiO2 loaded on the adsorption of… Click to show full abstract
Using copper nitrate trihydrate as the copper source, TiO2@Cu-MOF nanocomposites were prepared by a one-step crystallization method, and the effect of the amount of TiO2 loaded on the adsorption of rhodamine B was studied. X-ray diffraction (XRD), scanning electron microscope (SEM), energy spectrometer (EDS), N2 adsorption-desorption (BET), and infrared spectroscopy (FTIR) were used to characterize the microstructure and surface properties of composite materials. The results show that the composite material not only has a good degradability for rhodamine B, the decolorization rate reaches 98.03% after 120 min, but it also maintains a good cycle performance. Fitting the first-order kinetic equation to the reaction process, under the optimal conditions, R2 = 0.98, indicating that the reaction process conforms to the first-order kinetic equation. Therefore, the catalyst has good catalytic degradation and cycle performance.
               
Click one of the above tabs to view related content.